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Abstract
A theory of free-carrier absorption is given for quasi-one-dimensional ternary
semiconducting structures when the carriers are scattered by alloy disorder and
the radiation field is polarized along the length of the wire. The free-carrier
absorption coefficient is found to be an oscillatory function of the photon
frequency and of the area of the cross-section of the wire. It is found that
the absorption coefficient increases with decreasing transverse dimension of
the quantum wire. The results obtained are compared with those from the
quantum theory of free-carrier absorption in quasi-two-dimensional structures.
In addition, it was found that in quantum wire the electron–alloy-disorder
interaction gives a greater contribution to the absorption than the electron–
acoustic phonon interaction.

1. Introduction

Recently there has been growing interest in the study of properties of ultrathin semiconducting
wires, also called quantum well (QW) wires, with submicron dimensions. Electrons in
a semiconductor quantum wire can be viewed as a quasi-one-dimensional (Q1D) electron
gas. There are Q1D structures where carriers are confined to move along the length of the
wire and the motion is quantized in the transverse directions. The physical properties of
low-dimensional semiconducting structures differ from properties of bulk semiconductors
because the translational symmetry is broken [1]. For carriers confined in a QWs, the free-
carrier absorption (FCA) is practically important for determining the optical absorption. In
QW structures, apart from the direct interband and intersubband optical transitions, optical
absorption can also take place via indirect intrasubband optical transitions in which carriers
absorb or emit a photon with the simultaneous scattering of carriers from phonons or other
imperfections. Scattering-assisted absorption by free electrons and holes in the active QWs then
usually determines the internal loss in optically pumped laser devices with undoped claddings.
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Even in electrically pumped devices, assisted FCA can dominate if the lasing mode is optically
confined primarily to the active region, as in interband cascade lasers [2]. FCA in diode optical
cladding layers consisting of superlattice injectors [3] can also be significant. Since FCA is
one of the most powerful means for understanding the scattering mechanisms of carriers, it has
been studied in Q2D structures, theoretically, for the case of absorption assisted by acoustic [4]
and polar optical [5–8] phonon scattering, including the effects of phonon confinement [9],
piezoelectric coupling [10], ionized impurities [11], interface roughness [12], and electron–
electron [13] and alloy-disorder scattering [14]. FCA has been studied theoretically in Q1D
structures only (to our knowledge) for the cases where the carriers are scattered by acoustic [15]
or acoustic and optical phonons [16]. However, alloy-disorder scattering is an important
scattering mechanism when the confining QW consists of ternary semiconductor. Alloy-
disorder scattering in ternary compound semiconductors and QW structures has been the
subject of many theoretical and experimental investigations [17–28]. In its conventional theory,
the constituent pairs of type A and type B atoms are assumed to be distributed randomly within
the volume of the crystal.

In this paper we present the theory of FCA for the Q1D electron gas in QW structures of
ternary alloys when carriers are scattered by alloy disorder. We consider the FCA for the cases
where the radiation field is polarized along the length of the wire. The absorption coefficient
will be calculated for the example of Ga0.47In0.53As QW wires. We shall also consider in detail
the applicability of the standard semiclassical approximation to these QW wires.

2. Formalism

We consider a QW of an alloy denoted by the symbol A1−x Bx C. We assume that a gas of
carriers is confined to move in a long thin wire that is embedded in an insulating cladding. For
simplicity, we choose the cross-section of the wire to be rectangular with a and b the cross-
sectional dimensions along the x- and y-directions, respectively, and with L the wire length
along the z-direction where electrons are assumed to move freely. Assuming the usual effective-
mass approximation for the conduction band, the energy eigenfunctions and eigenvalues for
electrons in a rectangular thin wire can be written as

Eknl = Ek + En + El = h̄2k2

2m∗ + n2 E0
a + l2 E0

b

E0
a = π2h̄2

2m∗a2
, E0

b = π2h̄2

2m∗b2
n, l = 1, 2, 3, . . .

�knl = [2/(abL)
1
2 ] sin(πnx/a) sin(πly/b) exp(ikz).

(1)

The FCA coefficient when alloy-disorder scattering is dominant can be related to the
scattering rate for free carriers making an intraband transition from a given initial state with
the simultaneous scattering of carriers by alloy disorder and can be calculated using the standard
second-order Born golden rule approximation. In second-order perturbation theory, the matrix
element connecting the initial and final states for an optical transition in a QW wire is given by

〈k ′n′l ′|M|knl〉 =
∑

k′′n′′l′′

[ 〈k ′n′l ′|HR|k ′′n′′l ′′〉〈k ′′n′′l ′′|Hdis|knl〉
Eknl − Ek′′n′′l′′

+
〈k ′n′l ′|HR|k ′′n′′l ′′〉〈k ′′n′′l ′′|Hdis |knl〉

Eknl − Ek′′n′′l′′ + h̄�

]
(2)

where knl, k ′n′l ′ and k ′′n′′l ′′ are the wavevector and subband indices for the initial, final, and
intermediate states, respectively, h̄� is the photon energy, HR is the interaction Hamiltonian
for the electrons and the radiation field, Hdis is the alloy-disorder scattering potential.
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The matrix elements of the electron–photon interaction Hamiltonians, using the
wavefunctions, are

〈k ′n′l ′|HR|knl〉 = − eh̄

m∗

(
2π h̄n0

V �ε

) 1
2

(εK )δkk′ δnn′δll′ (3)

when the radiation field is polarized along the wire. Here ε is the dielectric constant of the
material, n0 is the number of photons in the radiation field, ε is the polarization vector of the
radiation field.

When the confining QW consists of a ternary semiconductor (such as Ga1−x InxAs), in the
virtual crystal approximation, alloy-disorder scattering potential has the form [21, 27, 28]

Hdis = δV

{
(1 − x)

∑
rIn

Y�0(r − rIn) − x
∑
rGa

Y�0(r − rGa)

}
, (4)

where Y�0(ra −rb) = 1/�0 when ra and rb are inside the same unit cell and vanish elsewhere,
and the summations run over all the unit cells; �0 is the volume of the unit cell. Using this
form of the potential, the matrix element for transition from a state knl to another state k ′n′l ′
may be expressed as

〈k ′n′l ′|Hdis|knl〉 = δV

[
�0

V
x(1 − x)

(
1 +

1

2
δnn′

)(
1 +

1

2
δll′

)] 1
2

. (5)

From equations (2), (3), and (5), the scattering rate for the electron–alloy-disorder interaction
and the electron–photon interaction can be obtained as

Wknl,k′ n′l′ = 4π2e2n0(δV )2�0x(1 − x)

m∗2�3εV 2

∑
n′l′

(
1 +

1

2
δnn′

)

×
(

1 +
1

2
δll′

)
|k ′ − k|2δ(Ek′n′l′ − Eknl − h̄�). (6)

The absorption coefficient is calculated by summing over all occupied initial states and
unoccupied final states. The coefficient FCA for a Q1D electron gas for a radiation field
polarized along the axis of the wire is finally given by

α1D
alloy = 2πe2(δV )2�0x(1 − x)

h̄4�3ε
1
2 (ab)2c

∑
nl

∑
n′l′

(
1 +

1

2
δnn′

)(
1 +

1

2
δll′

)

×
∫ ∫

(Ek′ + Ek)√
Ek′

√
Ek

( fknl − fknl )δ(Ek′n′l′ − Eknl − h̄�) dEk′ dEk . (7)

For the case of a nondegenerate, Q1D electron gas, the electron distribution function is

fknl = (2π)
1
2 h̄neab

γ δ(m∗kB T )
1
2

exp

[
n2 E0

n + l2 E0
n

kB T

]
exp

(
− h̄2k2

2m∗kB T

)

γ =
∑

n

exp

(
−n2 E0

n

kB T

)
, δ =

∑
l

exp

(
− l2 E0

l

kB T

) (8)

where ne is the concentration of the electrons. Using equation (8) in (7) we obtain the FCA
coefficient in the Q1D structure:

α1D
alloy = 2

5
2 π

3
2 e2(δV )2�0x(1 − x)ne(kB T )

1
2

ch̄3�3ε
1
2 abm∗ 3

2 γ δ

(
1 − exp

(
− h̄�

kB T

))

×
∑

nl

∑
n′l′

(1 + 1
2δnn′)(1 + 1

2δll′ )
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where

Z = h̄� − E0
n(n

′2 − n2) − E0
l (l

′2 − l2)

2kB T
exp

[
−n2 E0

n + l2 E0
l

kB T

]
Z exp(Z)K1(Z). (9)

K1(Z) is the modified Bessel function of the second kind. This expression can be compared
with the following expression for the FCA in a nondegenerate Q1D electron gas when acoustic
phonon scattering via the deformation potential dominates [15]:

α1D
ac = 2

7
2
√

πnee2 E2
d(kB T )

3
2

ε
1
2 cρv2

s m∗ 1
2 abγ δ

[1 − exp(− h̄�
kB T )]

(h̄�)3

×
∑

nl

∑
n′l′

(
1 +

1

2
δnn′

)(
1 +

1

2
δlll′

)
exp

[
−n2 E0

n + l2 E0
l

kB T

]
Z exp(Z)K1(Z)

(10)

where ρ is the density of the semiconductor, vs is the velocity of sound, and Ed is the
deformation potential. That the variations of the coefficients with photon frequency � are
identical may be seen from (9) and (10). The identical nature of variation for the two
scattering processes may be explained by examining the matrix elements for scattering. The
ratio α1D

alloy/α
1D
ac is

α1D
alloy

α1D
ac

= π(δV )2�0x(1 − x)ρv2
s

2E2
dkB T

. (11)

In this form, the ratio depends only upon material parameters and absolute temperature and
does not depend upon photon frequency.

It is interesting to note that in the quantum size limit, in the temperature range where the
intersubband transitions are not allowed due to the energy differences between the subbands
being very large (i.e. Ea/kB T > 1, El/kB T > 1, and Ea > h̄�, Eb > h̄�), we can assume
n = n′ = l = l ′ = 1. The expression for α1D

alloy reduces in this case to

α1D
alloy = 9π

3
2 e2(δV )2�0x(1 − x)√
2εm∗kB T abch̄2�2

exp

(
h̄�

2kB T

)(
1 − exp

(
− h̄�

2kB T

))
K1

(
h̄�

2kB T

)
. (12)

In the limit of very long wavelengths, the absorption coefficient is known to reduce to
the semiclassical form [29], which scales as λ2. The semiclassical expression becomes a
reasonable approximation in the limit of kB T � h̄� for nondegenerate statistics. In this limit
the absorption coefficient of equation (12) can be rewritten as

αsc = 9π
3
2 e2(δV )2�0x(1 − x)ne√

2εm∗kB T abch̄2�2
. (13)

In this paper, we shall refer to the quantity αsc given by equation (13) as the semiclassical
absorption coefficient. It displays the widely assumed quadratic dependence on the wavelength
of the light. Then αsc can be expressed in terms of mobility µ:

αsc = 4πe3ne

ε
1
2 m∗2c�2µ

. (14)

Here we do this using the Q1D electron mobility due to scattering by alloy disorder [26]:

µ = 4
√

2kB T eabh̄2

9
√

πm∗ 3
2 (δV )2�0x(1 − x)

(15)
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Figure 1. The FCA coefficient in a quantum wire is shown as function of the photon frequency for
the case of alloy-disorder scattering for various transverse dimensions of the wire. Curves 1 and
5 correspond to the FCA for GaAs quantum wire when the carriers are scattered by polar optical
and acoustic phonons (see [16]) for a = b = 10−6 cm. We have chosen: (1) a = b = 10−6 cm;
(2) a = 2 × 10−6 cm; b = 10−6 cm; (3) a = b = 2 × 10−6 cm.

For comparison, in the quantum limit, the FCA in a nondegenerate Q2D electron gas when
electron–alloy-disorder scattering is dominant is [14]

α2D
alloy = 9π2e2�0(δV )2nex(1 − x)kB T

8ε
1
2 h̄4cd�3

[
1 − exp

(
− h̄�

kB T

)](
1 +

h̄�

2kB T

)
. (16)

Here d is the thickness of the layer. In the quantum limit, the ratio of the FCA in a Q1D system
to that in the Q2D system:

α1D
alloy

α2D
alloy

= 4
√

2e
h̄�

kB T (1 − e
−h̄�
2kB T )K ( h̄�

2kB T )h̄2�d
√

πabm∗ 1
2 (kB T )

3
2 (1 − e

h̄�
kB T )(1 + h̄�

2kB T )
. (17)

This ratio takes a particularly simple form in the limit (h̄�/kB T ) � 1:

α1D
alloy

α2D
alloy

= 2
√

2h̄
3
2 ρ

1
2 d

abm∗ 1
2 (1 + h̄�

2kB T )kB T
. (18)
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1
a2 (10–5 Å–2)

α
(m

–1
)

Figure 2. The FCA coefficient is shown as a function of the reciprocal of the cross-section of the
QW wire, 1/a2, at 300 K. Curve 1 is for the wavelength λ = 5 µm and curve 2 is for λ = 3 µm.

3. Results and discussion

We have obtained general expressions for the quantum wires when the carriers are scattered by
alloy disorder. The FCA coefficient is expressed as a function of h̄� and also depends on a, b,
and T . We have evaluated, numerically, the above expressions for the FCA coefficient at 300 K
and parameters characteristic of Ga0.47In0.53As, and the electron concentration ne = 1017 cm−3.
On the basis of the expressions obtained we have constructed figures 1–3.

In figure 1, we plot the FCA coefficient α1D
alloy as a function of the photon energy h̄�. The

curves 2, 3, and 4 refer to alloy disorder and curves 1 and 5 to polar optical and acoustic phonon
modes [16]. It is shown that α1D

alloy decreases monotonically with increasing photon energy.
The kinks in the curves indicate alloy-disorder-assisted transitions between the subbands. The
enhancement of the absorption coefficient associated with scattering to higher subbands also
holds for other scattering mechanisms [15, 16]. It is shown that in quantum wire the electron–
alloy-disorder interaction gives a greater contribution to the absorption than the electron–
acoustic phonon interaction. It can also be seen that the FCA coefficients due to alloy disorder
and to polar optical phonons are of the same order.

In figure 2, we plot the FCA coefficient α1D
alloy in a Ga0.47In0.53As quantum wire as a

function of the cross-section of the wire. The absorption coefficient shows the oscillatory
behaviour as a function of 1/a2 whenever the photon energy is such that an alloy-disorder-
assisted transition takes place to one of the higher subbands of the QW wire. It is shown that
the FCA becomes considerably enhanced as the cross-sectional area of the wire decreases. It
was predicted in [26] that the relaxation rate due to alloy-disorder scattering in Q1D structures
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a2 (10–5 Å–2)

α al
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1D
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y
2D

Figure 3. The ratio of the FCA coefficient in QW wire to its value in the Q2D structure is shown as a
function of the reciprocal cross-section of the QW wire. Curve 1 is for the wavelength λ = 10 µm,
curve 2 is for the wavelength λ = 5 µm, curve 3 is for the wavelength λ = 3 µm.

increases as the transverse dimensions of the wire diminish. This increase in the scattering
rate explains the increase in the FCA coefficient predicted in our present numerical results for
a QW structure. As the wavelength decreases, more and more oscillations are observed and
the absorption coefficient increases linearly with a−2.

In figure 3 we have plotted α1D
alloy/α

2D
alloy given by equation (18) as a function of the cross-

section of the wire. It is shown that α1D
alloy/α

2D
alloy is considerably enhanced as the cross-sectional

area of the wire decreases.
In conclusion, we predict that when alloy-disorder scattering is dominant, the FCA

coefficient should increase with decreasing transverse dimensions of the wire for radiation
polarized along the length of the wire. We also predict an oscillatory dependence of the FCA
on the cross-section on the wire and it is enhanced over its 2D value by going to wires of
decreasing cross-section. The oscillatory behaviour is explained in terms of alloy-disorder
transitions between quantized subbands arising from the confinement of electrons in the
Q1D semiconducting structure. Similarly, as in Q2D structures, the electron–alloy-disorder
interaction gives a greater contribution to the absorption than the electron–acoustic phonon
interaction in Q1D structures made from the same materials.
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